Obesity Hypoventilation Syndrome

oPatientPlus articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use, so you may find the language more technical than the condition leaflets.

Synonyms: OHS, Pickwick syndrome

The classic features of obesity hypoventilation syndrome (OHS) are obesity and daytime hypercapnia.[1] The differences between OHS and obstructive sleep apnoea (OSA) are that the former has:[2]

  • Longer and more continuous episodes of hypoventilation overnight (there may or may not be upper airway obstruction).
  • Daytime hypercapnia.

Controversy surrounds the pathophysiology. Only a small proportion of morbidly obese patients suffer from the condition, so factors other than obesity must be at work. Some authors believe that the basic problem relates to the way the ventilatory drive reacts to hypoxia and hypercapnia.[3] Others consider that fat distribution, hormones and upper airway size are involved.

Upper airway obstruction is certainly known to play a prominent role. It may be associated with rapid eye movement (REM) atonia, increased fat distribution around the neck and upward displacement of the diaphragm by abdominal fat.[4] Experiments with mouse models suggest that deficiency of or resistance to leptin (a substance which reduces the surface tension of lung tissue) may be involved, leading to alterations in central respiratory drive and reduced ventilatory responsiveness, permitting development of carbon dioxide retention. Changes in neuromodulators resulting from the effects of hypoxia may further exacerbate the problem by depressing arousal from sleep in the face of abnormal breathing.[1]

Differentiation has been made between people suffering from sleep apnoea and obesity hypoventilation syndrome (OHS) in which hypoventilation is also evident whilst they are awake.[5] Most patients with the syndrome also have sleep apnoea but some patients do not, suggesting that it is the obesity per se which is causing chronic hypoventilation.[6]

Patients may also have concomitant features of asthma or chronic obstructive pulmonary disease (COPD).

NEW - log your activity

  • Notes Add notes to any clinical page and create a reflective diary
  • Track Automatically track and log every page you have viewed
  • Print Print and export a summary to use in your appraisal
Click to find out more »

There are no figures available for incidence or prevalence, mainly because the condition has been poorly defined in the past and often confused with obstructive sleep apnoea (OSA). It has been estimated that approximately 10-20% of patients with OSA have obesity hypoventilation syndrome (OHS).[3] Risk factors mirror that for obesity and the condition is more common in females. Tonsillar hypertrophy is an aggravating factor in children. The peak ages of presentation are 5-7 years and adolescence,[4] although increased awareness of the condition means that more and more cases are being diagnosed in adults.[2]

History

Symptoms suggestive of the diagnosis may include features of sleep apnoea (witnessed apnoea, snoring enuresis, nightmares, sleepwalking), chronic mouth breathing, daytime sleepiness, hyperactivity in children, morning headaches, decreased exercise tolerance, poor school performance, poor memory and poor concentration.

A drug history should be taken to exclude alcohol excess, sedating antihistamines and central nervous system depressants, all of which can aggravate the condition.

  • The typical patient will be clinically obese, with marked fat deposition around the chin and abdomen. Thoracic kyphosis is often a feature. Leg oedema may be present.
  • The head, ears, nose and throat should be examined to exclude facial dysmorphologies or ENT abnormalities that may cause upper airway obstruction, such as macroglossia, micrognathia, retrognathia or high-arched palate. The tonsils should be examined to exclude hypertrophy and the nasal passages to exclude polyps, cysts or swollen nasal turbinates.
  • Examination of the chest may reveal signs of cor pulmonale (loud second heart sound, displaced cardiac impulse). Acquired pes excavatum may result from overuse of the respiratory muscles overcoming extrathoracic obstruction.

Obesity hypoventilation syndrome (OHS) cannot be diagnosed on history and examination alone but requires the demonstration of daytime hypercapnia.[6]

Diagnostic criteria for OHS
  • Body Mass Index ≥30 kg/m2.
  • Daytime PaCO2 >45 mm Hg.
  • Associated sleep-related breathing disorder (sleep apnoea-hypopnoea syndrome or sleep hypoventilation, or both).
  • Absence of other known causes of hypoventilation.
  • Arterial blood gases - these are needed to confirm daytime hypercapnia and hypoxaemia.
  • Nocturnal oximetry should be carried out to determine whether sleep apnoea is also present (about one fifth of sleep apnoeic patients will have obesity hypoventilation syndrome (OHS). Formal polysomnography may be required in borderline cases.
  • CXR - may show chest wall deformities, or signs of cardiomegaly or congestive failure.
  • Echocardiogram - may show right ventricular hypertrophy.
  • ECG - arrhythmias and right bundle branch block have been recorded.
  • Pulmonary function tests:
    • Flow volume loop - expiratory volume as measured by spirometry is plotted in a continuous curve against flow rate - may show a 'sawtooth' pattern associated with upper airway obstruction.[7]
    • Forced vital capacity and expiratory reserve volume may be reduced and airways resistance increased.
  • Overnight polysomnography may confirm hypoventilation, hypoxia and hypercapnia during sleep, especially in children and adolescents.
  • FBC and TFTs should be performed to exclude anaemia and myxoedema.
  • A return to normal bodyweight is the mainstay of treatment. Unfortunately, although they may lose weight initially, many patients are non-compliant with dietary restriction in the long term. They are furthermore restricted from increasing their physical activity due to pulmonary symptoms. Bariatric surgery may be required in severe cases.
  • Continuous positive airways pressure (CPAP) is more helpful in obstructive sleep apnoea (OSA), where as patients with obesity hypoventilation syndrome (OHS) usually need assisted ventilation which may need to be supplemented by oxygen.
  • The inability of these patients to increase their ventilatory capacity should be borne in mind during their management (eg when they are subjected to hospital procedures which may lead to hypercapnia).[8]
  • Treat any concomitant OSA, asthma or COPD as appropriate.
  • Chronic hypoventilation may be associated with congestive heart failure, cor pulmonale and angina. Future research is likely to focus on the links between the syndrome and cardiovascular morbidity.[9] Early epidemiological data suggest a link with coronary artery disease and stroke.[10]
  • Conditions associated with obesity may include arterial hypertension, diabetes mellitus, hypothyroidism, osteoarthritis, hepatic dysfunction, hyperlipidemia, asthma and pulmonary hypertension.

Prognosis is improved by early recognition, weight loss and continuous positive airways pressure (CPAP). Two prospective studies reported no in-hospital deaths. Retrospective studies, however, reported considerable mortality (23% in one study) in obesity hypoventilation syndrome (OHS) patients who refused long-term CPAP.

Further reading & references

  1. Piper AJ, Grunstein RR; Current perspectives on the obesity hypoventilation syndrome. Curr Opin Pulm Med. 2007 Nov;13(6):490-6.
  2. Rapoport DM; Obesity hypoventilation syndrome: more than just severe sleep apnea. Sleep Med Rev. 2011 Apr;15(2):77-8. Epub 2011 Feb 3.
  3. Mokhlesi B, Kryger MH, Grunstein RR; Assessment and management of patients with obesity hypoventilation syndrome. Proc Am Thorac Soc. 2008 Feb 15;5(2):218-25.
  4. Cataletto ME et al, Pediatric Obesity-Hypoventilation Syndrome, Medscape, Jun 2011
  5. Pack AI; Advances in sleep-disordered breathing. Am J Respir Crit Care Med. 2006 Jan 1;173(1):7-15. Epub 2005 Nov 10.
  6. Poulain M, Doucet M, Major GC, et al; The effect of obesity on chronic respiratory diseases: pathophysiology and therapeutic strategies. CMAJ. 2006 Apr 25;174(9):1293-9.
  7. Flow volume loops, Anaesthesia UK, 2006
  8. Nelson JA, Loredo JS, Acosta JA; The Obesity-Hypoventilation Syndrome and Respiratory Failure in the Acute Trauma Patient. J Emerg Med. 2008 Aug 30.
  9. Lavie P; Who was the first to use the term Pickwickian in connection with sleepy patients? History of sleep apnoea syndrome. Sleep Med Rev. 2008 Feb;12(1):5-17. Epub 2007 Nov 26.
  10. Marchiafava PL, Kusmic C, Longoni B, et al; Cell physiology of the pineal body. Arch Ital Biol. 1997 Mar;135(2):183-94.

Disclaimer: This article is for information only and should not be used for the diagnosis or treatment of medical conditions. EMIS has used all reasonable care in compiling the information but make no warranty as to its accuracy. Consult a doctor or other health care professional for diagnosis and treatment of medical conditions. For details see our conditions.

Original Author:
Dr Gurvinder Rull
Current Version:
Peer Reviewer:
Prof Cathy Jackson
Last Checked:
19/04/2012
Document ID:
4072 (v23)
© EMIS