Kartagener's Syndrome

oPatientPlus articles are written by UK doctors and are based on research evidence, UK and European Guidelines. They are designed for health professionals to use, so you may find the language more technical than the condition leaflets.

Synonyms: Afzelius' syndrome, KS, Kartagener's triad, Siewert's syndrome, dextrocardia-bronchiectasis-sinusitis syndrome, primary ciliary dyskinesia

This is described as autosomal recessive inherited syndrome. Primary (genetic) defects in the structure and function of sensory and motile cilia result in multiple ciliopathies. A reduction in the number of arms which propel mucus (dynein arms) is a common abnormality but many other structural defects of the cilia have been found. Patients with normal cilia morphology but abnormal mucus propulsion have been detected. In diagnosing the syndrome, therefore, both ciliary structure and motility need to be assessed.[1]

It consists of a triad of features:

  • Situs inversus (transposition of the viscera)
  • Abnormal frontal sinuses (producing sinusitis and bronchiectasis)
  • Primary ciliary dyskinesia (PCD)[2]

The defective cilia lining the respiratory tract are unable to clear the airways of secretions and pathogenic bacteria, resulting in mucus retention and chronic or recurrent respiratory tract infection - leading to damage to airway walls. Approximately half of patients with PCD have the full triad of Kartagener's syndrome (KS).[3] There may also be a link with retinitis pigmentosa and hearing loss.[1][4]

It is suspected that visceral rotation in the embryo is dependent upon normal ciliary action, hence the association between primary ciliary dyskinesia and situs inversus abnormality.

The incidence of the genetic disorder is 1 in 32,000 births.[1] However, higher incidences have been found in communities in which consanguineous marriages are common.[5]

Save time & improve your PDP on Patient.co.uk

  • Notes Add notes to any clinical page and create a reflective diary
  • Track Automatically track and log every page you have viewed
  • Print Print and export a summary to use in your appraisal
Click to find out more »

History

  • Neonatal respiratory distress may occur.[6]
  • Upper respiratory symptoms may include: chronic rhinorrhoea from early childhood, reduced sense of smell and chronic rhinitis.
  • Recurrent otitis media may occur.
  • Chronic obstructive pulmonary disease, bronchiectasis and recurrent pneumonia may all be components of the syndrome.
  • Male infertility due to immobile spermatozoa and decreased fertility in females may also occur.

Examination

Findings may include dextrocardia and situs inversus, asplenia, nasal polyps, rhinitis, corneal abnormalities, and conductive deafness. Extremities may exhibit distal clubbing.

Conditions which may need to be considered include:

  • Allergic rhinitis
  • Adenoid hyperplasia
  • Allergic bronchopulmonary aspergillosis
  • Bronchial obstruction
  • Chronic aspiration
  • Congenital cartilage deficiency
  • Cystic fibrosis
  • Idiopathic nasal polyposis
  • Inhalation of toxic substances
  • Postinfectious bronchiectasis
  • Pulmonary sequestration
  • Samter triad (asthma, aspirin sensitivity and nasal/ethmoidal polyposis)
  • Severe atopy
  • Tracheobronchomegaly
  • Yellow nail syndrome
  • Chest X-ray may show dextrocardia, lung over-inflation, bronchial wall thickening and peribronchial infiltrates. Right-sided heart disease with chronic respiratory tract symptoms is highly indicative and occurs in half of patients.
  • CT scan for bronchiectasis and to demonstrate involvement of paranasal sinuses (poorly aerated mastoids ± absence of frontal sinuses).
  • Transmission electron microscopy of cilia from airway biopsy (nasal mucosa or tracheal mucosa taken when the patient is not acutely ill). The specimen is examined for ciliary movement, beat frequency, co-ordination and amplitude.The most common ultrastructural defect is an absence or decrease in the number of inner or outer dynein arms. This investigation is helpful in differentiating primary from secondary ciliary dysfunction.
  • Semen analysis in postpubertal males may reveal abnormal sperm motility and ultrastructure.
  • The saccharin test is only used occasionally due to pragmatic difficulties. Saccharin is placed in the nose and the speed of transport to the nasopharynx is measured.
  • Measurement of nasal nitrous oxide is a useful screening test, which has the advantage of being noninvasive. It involves the patient breathing in nitrous oxide and then measuring the level during exhalation through the mouth or nose. The level is low in Kartagener's syndrome (KS) patients due to reduced ciliary clearance in the paranasal sinuses.[7]
  • Pulmonary function tests may be abnormal.
    • Spirometry may reveal an obstructive picture with a reduction in the ratio of forced expiratory volume in 1 second to forced vital capacity, decreased forced expiratory volume in 1 second and a reduction in respiratory flow of 25-75%.
    • Static lung volumes may demonstrate hyperinflation.
    • The response to bronchodilators is variable.
  • Surgical procedures.
    • Examination of mucous membrane is the gold standard investigation.This is best obtained when the patient is not acutely ill, as ciliary morphology or function may be affected. Tracheal biopsy provides the best specimen but needs general anaesthesia. Nasal mucus is more readily available. Nasal brushings are less invasive but often yield inadequate results.
    • Children with KS frequently end up having adeno-tonsillectomies which can provide a fruitful source of material for histopathology and electron microscopy.
    • Nasal endoscopy may be required to detect polyps.

Efforts to standardise the clinical criteria for the diagnosis of KS have centred on dextrocardia, a ciliary beat frequency of less than 10 Hz/s and a mean cross-section dynein arm count of less than 2. If the patient does not have dextrocardia, the identification of primary ciliary dyskinesia becomes the mainstay of diagnosis. Genetic testing ultimately may become the principal means of establishing this diagnosis.[8]

Medical care

  • Antibiotics - intravenous or oral, intermittent or continuous - are used to treat upper and lower airway infections.Haemophilus influenzae and Staphylococcus aureus are the most common organisms. Long-term low-dose prophylactic antibiotics may be necessary in children.
  • Obstructive lung disease/bronchiectasis should be treated with inhaled bronchodilators, mucolytics and chest physiotherapy.[9] The evidence base is largely anecdotal but there may also be a role for inhaled antibiotics, inhaled and oral corticosteroids and recombinant DNAs.
  • Influenza and pneumococcal vaccination should be encouraged.

Surgical care

  • Tympanostomy tubes will reduce recurrent infections and conductive hearing loss. Repeated insertions may be required and chronic suppurative otitis media can be an annoying complication. Aural hygiene measures, such as acetic acid irrigations, otomicroscopy, or topical or systemic antibiotic therapy may be required.
  • Endoscopic sinus surgery and the formation of a nasal antral window underneath the inferior turbinate, may afford a transient improvement in upper and lower respiratory tract symptoms.
  • Lobectomy is sometimes required for the associated bronchiectasis.[10] Lung transplantation and heart-lung transplantation have occasionally been tried in severe cases, with some success.[11][12]

Complications include bronchiectasis, pneumonia, conductive deafness and communicating hydrocephalus.

Treatment with antibiotics, physiotherapy and appropriate surgical intervention has improved the prognosis in these patients and, in many cases, lifespan may be normal.

Further reading & references

  1. Bent J III; Kartagener Syndrome. eMedicine, 2009.
  2. Zariwala MA, Knowles MR, Omran H; Genetic defects in ciliary structure and function. Annu Rev Physiol. 2007;69:423-50.
  3. Guichard C, Harricane MC, Lafitte JJ, et al; Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet. 2001 Apr;68(4):1030-5. Epub 2001 Feb 23.
  4. Krawczynski MR, Witt M; PCD and RP: X-linked inheritance of both disorders? Pediatr Pulmonol. 2004 Jul;38(1):88-9.
  5. O'Callaghan C, Chetcuti P, Moya E; High prevalence of primary ciliary dyskinesia in a British Asian population. Arch Dis Child. 2010 Jan;95(1):51-2. Epub 2009 Aug 30.
  6. Leigh MW, Pittman JE, Carson JL, et al; Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009 Jul;11(7):473-87.
  7. Santamaria F, De Stefano S, Montella S, et al; Nasal nitric oxide assessment in primary ciliary dyskinesia using aspiration, exhalation, and humming. Med Sci Monit. 2008 Feb;14(2):CR80-85.
  8. Geremek M, Schoenmaker F, Zietkiewicz E, et al; Sequence analysis of 21 genes located in the Kartagener syndrome linkage region on chromosome 15q. Eur J Hum Genet. 2008 Feb 13;.
  9. Rosen MJ; Chronic cough due to bronchiectasis: ACCP evidence-based clinical practice guidelines. Chest. 2006 Jan;129(1 Suppl):122S-131S.
  10. Otgun I, Karnak I, Tanyel FC, et al; Surgical treatment of bronchiectasis in children. J Pediatr Surg. 2004 Oct;39(10):1532-6.
  11. Alvarez A, Algar FJ, Santos F, et al; Pediatric lung transplantation. Transplant Proc. 2005 Apr;37(3):1519-22.
  12. Miralles A, Muneretto C, Gandjbakhch I, et al; Heart-lung transplantation in situs inversus. A case report in a patient with Kartagener's syndrome. J Thorac Cardiovasc Surg. 1992 Feb;103(2):307-13.
  13. Kartagener Syndrome; Madisons Foundation, 2008; No authors listed

Disclaimer: This article is for information only and should not be used for the diagnosis or treatment of medical conditions. EMIS has used all reasonable care in compiling the information but make no warranty as to its accuracy. Consult a doctor or other health care professional for diagnosis and treatment of medical conditions. For details see our conditions.

Original Author:
Dr Laurence Knott
Current Version:
Last Checked:
20/04/2010
Document ID:
2353 (v21)
© EMIS